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ON PRODUCTS OF TWO NILPOTENT 
SUBGROUPS OF A FINITE GROUP 

BY 

ARIE B IAL OS T OCK!  

ABSTRACT 

Let G be a finite group with an abelian Sylow 2-subgroup. Let A be a nilpotent 
subgroup of G of maximal order sat isfying class (A)<= k, where k is a fixed 
integer larger than I. Suppose that A normalizes a nilpotent subgroup B of G 
of odd order. Then  AB is nilpotent. Consequent ly ,  if F(G) is of odd order and 
A is a nilpotent subgroup of G of maximal order, then F ( G ) C A .  

A.  I n t r o d u c t i o n  a n d  n o t a t i o n  

All groups in this paper  are finite. We shall use the following notation. 

X - -  The set of non negative integers. 

op - -  The set of all prime numbers.  

G I A finite group. 

F ( G )  i The Fitting subgroup of G. 

qb(G) I The Frattini subgroup of G. 

�9 r (G)  - -  The set of primes d iv id ing]G[ .  

Sp(G) - -  A p-Sy low subgroup of G. 

�9 ~ - -  The set of all functions f s.t. f :  ,@ ---, X U {~}. 

class (G)  - -  The nilpotency class of a nilpotent group G. 

Let G be a finite group and let ,f E ,~. Define: 

,~([. G)  = {A I A is of maximal order among all subgroups of G satisfying (a) 

A is nilpotent, and (b) for all p E op c las s (Sp (A) )<=f (p ) }  

d (f, G ) = [ a  I where A C ,d ([, G ). 

REMARKS. 

(a) S, , (A)  is nilpotent of class =<0r162 = I. 

(b) Clearly in considering s/( / ,  G),  we are interested in the restriction of f to 

zr(G), since if p ~  7r(G) then class(So(A))  = 0. 

(c) The statement:  "class(So(A))=< ac" does not restrict Sp(A) .  Therefore  
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M(oo, G) denotes the set of all nilpotent subgroups of G of maximal order. 

(d) If f is a constant function f - a ,  when a E)r U{~}, M(f ,G)  will be 

denoted by M(a, (3) and by definition: M(a, G ) =  { A I A  is of maximal order 

among all subgroups of G satisfying (a) A is nilpotent, and (b) class (A) _-< a }. 

Using the notation above the following was proved in [1]: If G is a group of 

odd order, A E M(I, G) and A normalizes a nilpotent subgroup B of G, then 

A B  is niipotent. If G is of even order, then the last result does not hold, unless 

extra conditions are imposed. The even case is also discussed in [1]. In [3] it 

was proved that if G is a finite group, A EM(2,  G) and A normalizes a 

nilpotent subgroup B of G, then AB is nilpotent. 

It is natural to ask whether it is possible to generalize the above results for 

k > 2. For groups of odd order the positive answer is given in: 

COROLLARY C.5. L e t G b e a g r o u p o f o d d o r d e r ,  A E M ( k , G ) , k  E N  O{~}, 

k >- 2 and assume that A normalizes a nilpotent subgroup B of G. Then AB is 

nilpotent. Consequently, if A E M(oo G), then F(G)  C_ A. 

Corollary C.5 follows from 

COROLLARY C.4. Let G be a group with an abelian Sylow 2-subgroup. Let 

A E M ( k , G ) ,  k E N  U {oo}, k _->2 and assume that A normalizes a nilpotent 

subgroup B of G of odd order. Then AB is nilpotent. 

Corollary C.4 is, in turn, an immediate result of the following theorem: 

THEOREM C.3. Let G be a group with an abelian Sylow 2-subgroup. Let B 

be a nilpotent subgroup of G of odd order, f E F and assume that either (1) or 

(2) holds : 

(l) f(p)_->2 for all p Err (B)  

(2) f(p)_--> I for all p Err (B)  and B is abelian. 

Then if A E M(f, G) and A normalizes B, then AB is nilpotent. 

Theorem C.3 yields also the following corollaries. 

COROLLARY C.6. Let G be a group of odd order and assume that f E 

satisfies f ( p ) > 2  for all p Err(G).  Then d( f ,G)  and IF(G)I have the same 

prime divisors. 

The next corollary is a generalization of a theorem of Burnside [2] for groups 

of odd order. 

COROLLARY C.7. Let G = H K  be a group of odd order, where H and K are 

zr-Hall and rr'-Hall subgroups of  G, respectively. Then d(o~,H)>d(2,  K)  

implies O, (G) # I. 
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Corollary C.8 is a generalization for groups of odd order of a well known 

theorem stating that F(G)  = Op,(G) x Opt(G) •  x Opt(G), when rr(G) = 

{P , , p2 , " ' , p k } .  

COROLLARY C.8. Let G be a group of  odd order and let ~r(G) = 

{Trl, 1r2,- �9  irk} be any partition of  Tr(G). I f  H~ denotes a rq-Hali subgroup of  G 

and A, E~(oo ,  H~) for i = I , - . . , k ,  then 

F(G)= n A7 x n A[ x . . . x  n A~,. 
x E G  x E G  x E G  

The proof of theorem C.3 depends on an important property of the group 

GL (n, q), q ~ ~,  (Theorem B.7) which is obtained using methods and results of 

[5]. First a definition: 

Let  q be a fixed prime and suppose that f ~ ~ satisfies f (q )  = 0. We will say 

that q satisfies (property) a for  f if for  every n E X, n > 0, the following 

inequality holds: d([, GL (n, q )) < q". 

THEOREM B.7. 

(a) l f q  is an odd prime, then q satisfies a f o r f  E J;, s.t. f ( q )  = 0 and [(2) _-< 1. 

(b) I f  q is an odd prime, neither a Fermat-prime nor a Mersenne-prime, then 

q satisfies a for f ~ t~ s.t. [ (q)  = 0 and f ( p )  <-_ 1 for all primes ~ 2. 

(c) I f  q = 2, then q satisfies a for f E ~; s.t. 1"(2) = 0 and f ( p )  <-_ 1 for all 

primes p ~ r, where r is a non-Mersenne-prime. 

A similar result was obtained in [3], where it was shown that any prime q 

satisfies a for  [ E  ~: s.t. [ (q )  = 0  and f (p )  = 2 for all p E ~ ,  p # q .  

B. On the property a 

LEMMA B.I. Let G = H N  be a group, where H and N are ~r-Hall and 

zr'-Hall subgroups of  G, respectively, and N <J G. Suppose O , ( G )  = l and A is 

a group of  H. Then for all x E N, A n H x = CA(x). 

PROOF. Let  x E N ;  then CA(x) C_ A O (CA(x)) x C_ A O H ~. Let  h (E A n H ~, 

then h = x - t h , x  where hi E H. Equivalently h = h,[h, ,x],  but [hi ,x]  • N, so 

h = h, and h = x-~hx. It follows that h E CA(x). 

LEMMA B.2. Let G = H N  be a group, where H and N are q'-Hall  and 

q-Sylow subgroups of  G, respectively, and N ,~ G. Suppose that Oq,(G) = I and 

N is a minimal normal subgroup of  G. Let  x E N ;  then : 
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(a) Cz,m(x)  = 1 or equivalently, by B.I, Z ( H )  N H ~ = 1. 

(b) Z ( H )  is cyclic. 

PROOF. 

(a) Let g E Cz<H)(x); then g E Cz(,)(x h) for every h ~ H, so g centralizes 

(xU), which is a normal subgroup of G included in N. By the minimality of N, 

(xH} = N. Now applying Lemma 1.2.3 of HalI-Higman we get that g = I. 

(b) Apply to the group Z ( H ) N  the theorem about the structure of a 

Frobenius complement (theorem 12.6.15 of [8]). 

THEOREM B.3. Let  G = H N  be a group o f  odd order, where N is a minimal 

normal subgroup o f  G o f  order q ", q E ~, and H is a nilpotent q '-Hall subgroup 

of  G. Let Oq,(G) -- l; then there exist n), n2 E N which are not H-conjugate and 

such that H n n-, 'Hnt = H n n~ 'Hn2= 1. 

PROOF. 

(a) Assume first that H is abelian. Applying B.2. (a) it follows that for all 

n E N, H n H" = 1. It is left to show that there are two non H-conjugate 

elements in N. But otherwise we would have I H { = q n - l ,  and this is 

impossible since G is of odd order. 

(b) So we may assume that H is not abelian and hence N is not cyclic. We 

shall show that there exists a maximal subgroup/4  in H s.t. N is not minimal 

normal in /:/N and Z(/:/) is non-cyclic. 

In view of B.2. (b) it is sufficient to show that there exists a maximal 

subgroup f / i n  H s.t. Z(/:/) is non-cyclic. Since H is not abelian, there exists a 

p-Sylow subgroup P of H which is not cyclic. By theorem 9.5 of [7] there 

exists a non-cyclic normal subgroup L of P of order p2. Def ine/~  = C , ( L ) .  

Using the N / C  theorem and in view of the fact that by B.2. (b) Z ( H )  is cyclic, 

it follows that/2/  is maximal in H. 

(c) Let N, be a minimal normal subgroup in /g/N s.t. N~g~N and let 

d E H\ f / .  It will be shown that: 

N = N,  x d - ' N i d  x . . .  d-~"-'~N,d "-j. 

By the minimality of N it follows that: 

(1) N = Nt  " d - l N l d  �9 �9 �9 d-~O-I~Ntd "-l. 

Let /4 be the centralizer of N, in /2/. Since C a ( N )  C-N, 

ISI O d-112Id n �9 �9 �9 n d -~p -1~/4d p-' = 1. Now it is clear that if l _-< i _-< p - 1, then 



182 A. BIALOSTOCKI Israel J. Math. 

either N ,  . d - '  N , d  . . . d - " - ~ N , d  ~-' n d - ' N , d  ~ is equal 1 or d - ' N , d  ~ C_ 

N ~ .  d - ' N , d  �9 �9 �9 d - " - ' ~ N M  ~-~. If for  all i, 1 < i _-< p - 1, 

N ,  �9 d - ' N , d  �9 �9 �9 d - " - ' ~ N , d  ~-' n d - ~ N , d  ~ = 1, we are through. So assume that i is 

the smallest integer s.t.: Nt x d - ' N , d  x . .  �9 x d - " - ' N , d  ~-' D_ d - ~ N M  ~. Let 

d - % d  ~ ~ d - ~ N , d  ~, then d-~n~d ~ = n o d - ' n , d  . . .  d-"- '~n~_M ~-~ and this represen- 

tation is unique. If h ~ H, it is easy to see that 

(2) if h ~ / : /  (h ~ H\ / : / )  then h normalizes (permutes) the factors in (1). 

Hence  if h ~ C n ( d % d ~ ) ,  then h centralizes all the d-~n~d ~ in the representa- 

tion of d- 'n ,d ' .  We can choose such a non identity element d-~n ,d  ~. Since 

d-~IZId ~ is normal in d-'I2Id ~= I2I, it' centralizes ( ( d - ~ n , d " ) n ) ,  which is a non 

identity subgroup of N normalized by/2/. So ( (d -~n ,d~)  n )  = d - ~ N , d ~ y i e l d i n g  

d-~ISId ' = d-~I2fd ~, hence /~  <1 H and/- t  = 1. But i f /~  = 1, Oq.(I?-IN,) = 1 and by 

B.2. (b) Z(/2/) is cyclic in contradiction to part (b). 

(d) Proof of the theorem by induction on I G I. 

Consider I:INJISI, which is a minimal normal subgroup of f f lNl / l : t .  By 

induction hypothesis there exist elements n ~'~, n ~ ' E  N, s.t. /2 /n  n~'- ' lgln~ '~= 

I:t O n~"- ' l t ln~ " =  f I ,  where n~ '~ and n':" are not /~-conjugate. 

Defining: 
n,  = n~ u .  d-~n~21~d . . . .  d-a'-~ p-~ 

n2 = n~, '~. d-~n~l)d . . . .  d--~'-')n~')d ~'-' 

we shall get that H n n ~ H n ,  = H O n ~ ' H n 2  = 1. It will be proved only that 

H n n T ' H n ,  = 1, since the other equality is obtained similarly. By B.I it is 

sufficient to prove that C u ( n , ) =  1. Let  ed ~ E CH(n , ) ,  where e ~ and 

0=<x = p  - 1. Then: 

n~ = (ed  x)-a n , e d  ~ = (ed  x ) - ' n  ~Ued ~ �9 (ed  ~ ) - I d - ' n  ~ d e d X . . .  

. . .  ( ed  ~ )-~ d -~-I~n ~ d p-led*.  

Assuming that x > 0 ,  it follows by (2) that the N,-  component  in the 

representation of n, is of one of the forms: ( e d ~ ) - ' d - ~ n ~ " d ~ e d  ~ or 

( e d ~ ) - ~ n ~ e d  ~. But the last form is impossible, since then: ( e d ~ ) - ' n ~ ' e d ~  

d - ~ N t d  ~ n N~ = 1. As d~ed ~ normalizes N~, d~ed ~ ~ FI. Thus n~ '~ and n~ ') are 

ff/-conjugate, a contradiction. Therefore  x = 0 and e centralizes n, hence also 

n~". Thus e E / ~  O n~"-'I:ln~ 9 = H. By the same argument since e centralizes 
- i  ( I )  i d n2 d ,  e ~ d - ~ l g t d  ~ for  every i, l < = i < = p - 1 .  So 

e E I=I n d- ' IZld n . .  �9 O d -~  " l i d  ~-~, hence e = 1. To complete the proof it is 

left to show that n~ and n2 are not H-conjugate .  Assume n, = ( e d ~ ) - ' n 2 e d  ~, 
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where e E/~/, O < - x < = p - l .  Assuming x > 0 ,  by substitution we get: nt = 

(ed x )- 'n~'ed ~ �9 (ed ~ )-~d- 'n~'ded ~ . . .  ed~d -~p "n~>dP-~ed ~. The N~- component 

of n, in the last representation is of form: (ed~)- 'd  ~n~,'d~ed ~, 1 <= Ix <=p - 1, 

since if it was of the form: (edX)-ln~'ed x, ed ~ would normalize Nj, in 

contradiction to x >0 .  Since p > 2 ,  there are A,/~ I<--A, / z - < p - 1  s.t.: 

d-~'n~'d " = (edX)-'d-~n~'~d~ed ~ or n ~ ' =  (ed~-")- 'd-~n~'d~ed ~ ".  It follows 

that d~ed ~-~ E/g/, since by (2) d~ed ~-" normalizes N1. Thus n~ ~> and n~ ~ are 

if/-conjugate, a contradiction. Therefore x = 0. By equating the N,-component  

in the two forms for nj, we get n ~ ' = e - ' n ~ %  where e ~/2/. But this is 

impossible, since n~" and n~ t~ are not /:/-conjugate. 

THEOREra B.4. Let  G be a group o f  odd order and suppose that H is a 

nilpotent w-Hall subgroup o f  G. Then there exists x ~ G s.t. H n H" = O,,(G). 

PROOF. By induction on lGr. 

(a) We can assume that O,~(G)= 1. 

(b) We can assume that G = HR,  where R is a normal zr'- subgroup of G. 

G is of odd order, hence by Feit-Thompson G is solvable. Consider the 

group H-O, , , (G) ;  by Lemma 1.2.3 of HalI-Higman O~(HO,, , (G))= 1, so, if 

HO, . (G)  ~ G the theorem follows by induction. 

(c) We can assume that R is a minimal normal subgroup of G. 

Let N be a minimal normal subgroup of G contained properly in R. Consider 

the group G / N ;  O ~ ( G / N ) =  H * N / N  when H* is a or-subgroup of G. By 

induction hypothesis there exist r subgroups of G, H, and H2, s.t. 

H , N A H : N = H * N .  Clearly we can assume that H ~ A H 2 = H * .  Since 

O , , (H*N)  = 1, by induction hypothesis there exists n ~ N s.t. H* O n-~H*n = 

1. We shall see that H, n n-tH2n = 1. Indeed, 

(3) H~ n n- tH2n c H~N O n-~H2nN = H~N n H2N = H* N and (3) implies 

(4) 

(4) Ht n n - 'H2n  = (Hi n H * N )  O ( n - t H 2 n  n H ' N )  = H *  n n - ' H * n  = 1, 

yielding (c). 

(d) We have now the conditions of Theorem B.3 and Theorem B.4 follows. 

The next theorem is cited from [6]. The proof of it is in [5] and [6]. 

THEOREM B.5. Let  G be a solvable group and let P be a p-Sylow subgroup of  

G. Suppose that either condition (a) or condition (b) holds: 

(a) p is an odd non-Mersenne prime. 

(b) p = 2 and I Gt is not divisible by a Fermat  or Mersenne prime. Then 

there exists an x E G s.t. P n P~ = Op (G). 
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THEOREM B.6. Let G be a solvable group with a nUpotent 7r-Hall subgroup 

H. Suppose that one of  the following conditions is satisfied : 

(a) S2(H) is abelian and non trivial. 

(b) Sp,(H) is abelian for a non-Mersenne odd prime p. 

(c) Sz,(H) is abelian and if q E ~r(G)\Tr(H), then q is neither a Fermat prime 

nor a Mersenne-prime. 

Then there exists an x E G s.t. H O H"  = O,(G) .  

PROOF. By induction on I G I. Following parts (a), (b), (c) of Theorem B.4 we 

can assume that O,,(G)= 1 and G = HR, where R is a minimal normal 

subgroup of G. We can write H = Ht • H2 where (In,I, In,l) --- 1 and in case (a) 

HI is S2(H), in case (b) H1 is Sp,(H), and in case (c) H1 is S t (H) .  In all cases H,  

is abelian. Applying Theorems B.4 and B.5 to the group H2R (B.4 in case (a) 

and B.5 in cases (b) and (c)) we get that there exists an x E R s.t. H2 n H~ = 1, 

so clearly H2 n H ~ = 1. As H, C_ Z ( H ) ,  applying Lemma B.2. (a) to G = HR we 

get Ht  n H ~ = 1. Combining the two last results we get that H O H ~ = 1. 

THEOREM B.7. 

(a) If  q is an odd prime, then q satisfies a for f ~ 3;, s.t.: [ ( q ) = 0  and 

f(2) _-< I. 

(b) If  q is an odd prime, neither a Fermat-prime nor a Mersenne-prime, then 

q satisfies ct for f E 3; s.t. f (q ) = 0 and f (p)  <-_ 1 for all primes p ~ 2. 

(c) If  q = 2, then q satisfies a for f ~ 3; s.t. f(2) = 0  and f (p)  <-_ 1 for all 

primes p ~ r where r is a non-Mersenne-prime. 

PROOF. Denote by V the elementary abelian group of order  q" and let 

A ~ ~ (/, GL (n, q)). Let G be the extension of V by A, G = A �9 V. It follows 

then by Theorems B.4 and B.6 that there exists an x ~ G s.t. A N A ~ = 1, 

whence I A I <1 V I = q". 

EXAMPLES. 

(a) Le t  / E 3; be defined by f (p  ) = 10 for  p ~ 5 and / (5 )  = 0. Then 5 does not 

satisfy a for  f, since 21' IGL(4,5)] and 2 't > 5 ' .  

(b) Let  f E ~: be defined b y / ( p )  = 3 for p ~ 2 and / (2 )  = 0. Then 2 does not 

satisfy a for  f, since 3'II(GL(6, 2)1 and 3' > 2'. 

C. The main theorem and its corollaries 

Let q • ~,  a ~ N U {~} and f E 3;. Defining f~'~ ~ ~ by 
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fq.a(p)={~(P) for p ~ q  
for p = q 

we get: 

T~IEOREM C.1. Let G be a group, q E ~ ,  f ~  ~ s.t. f (q )=O and 
a E Jf  U {o0}. Consider the following statements : 

(a) q satisfies ~ for [. 

(b.1) If  A ~ ~(,fq'*,G) and A normalizes a q-subgroup of G, then AB is 
nilpotent. 

(b.2) I rA  E s4(/*a, G) and A normalizes an abelian q-subgroup of G, then 

AB is nilpotent. 

Then (a) is equivalent to (b.1) for a >-_ 2 and (a) is equivalent to (b.2) for 

a = l .  

PROOF. 

Part A. (a) :~ (b.1), (b.2). 

The two cases will be proved simultaneously. Let q E ~, f E ~ s.t. f(q ) = 0 and 

let a E X U {oo}. Suppose that q satisfies a for f and assume that either (b.1) or 

(b.2) does not hold. Let G be a counter example, i.e. there exists A ~ ~(fq'~ G) 

normalizing a (abelian in case a = 1) q-subgroup B of G, and AB is not 

nilpotent. Choose G and B so that I G I + I B I is minimal. Clearly we can assume 

that G --AB. The following notations will be used: 

Aq = Oq (A), Aq. = Oq,(A ) and �9 = ~(B) .  

I) B = [B, Aq,] and in case (b.l) B is nilpotent of class at most 2. 

By the minimality of I BI it follows that Aq. centralizes every proper 

subgroup of B which is normalized by A. In particular ~ is such a subgroup, so 

Aq. operates on V = B/dP. It follows from theorem 5.2.3 [4, p. 177] that 

V = C v ( A q . ) x [ V ,  Aq.]. By the minimality of IBf V cannot be A- 

decomposable. If V = Cv(Aq.) then AB is nilpotent, so Cv(Aq,) = 1 and 

V = [V, Aq,] and it follows that B = [B, Aq.]. As B '  is a proper A-invariant 

subgroup of B, it is centralized by Aq,. Using the three subgroups lemma we get 

from [B',B, Aq.] = 1 and [Aq,,B',B] = 1 that [B, Aq.,B'] = 1. But B = [B, Aq.], 

so it follows that B is of class at most 2. 

II) A~ centralizes B. 

Let us consider the group Aq V which is an extension of V by A~. This is a 

q-group, so by a known property of nilpotent groups it follows that 

[V, Aq] # V. Since [V, Aq] is A-invariant, it follows by the minimality of IB[ 
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that Aq, centralizes [ V, Aq ]. Since by part IC v  (Aq,) = 1, it follows that [ V, A~ ] is 

trivial, hence [B,A~] C_ dp. Applying the three subgroups lemma again, we get 

from [B, A~, Ar = 1 and [Ar Aq., B ] = 1 that [A~,, B, A, 1 = I. But [Aq., B ] = B, 
so we get that Aq centralizes B. 

III) Proof of part A. 

Define ,,~ = A/CA(B). If I V I= IB/~} = q", then ,4 E GL(n,q) .  By II ,g, is a 

q ' -group and by (a) A <- d ( f  GL (n, q)) < q" = I V 1. Define A * = C,~ (B)B ; 

clearly A*  is a nilpotent group. Since if H and K are commuting nilpotent 

groups then class ( H K ) =  max{class(H),  class(K)}, it follows that in both 

cases (b. 1) and (b.2) class (Sp (A *)) <= p ~  (p) for all p ~ ~.  Since A E .d (./q'~ G)  

it follows that I A * [ -<_ I A 1. On the other hand it will be shown that I A* [ > I A I 

and this leads to a contradiction. First, since (B tq CA (B)Cb)/O is an A-invariant 

subgroup of V, it follows by arguments used in II that B r CA (B) C_ ~ .  Now: 

[a  "1 = [CA(B)BI= [B: B N CA(B)1 [CA(B) I > [B/~P[ IC (B)I = 

= I V [  IC~(B)I >lfi ,  I ICA(B)I=tA[.  

Part B. (b.1), (b.2) ~ (a). 

Suppose (a) does not hold, then a group G will be constructed which is a 

counter-example to (b.1) and (b.2). Since (a) does not hold, q does not satisfy a 

for an/" s.t. [ (q )  = 0, i.e. there exists ari n E2/', n > 0  s.t. d([ ,GL(n ,q ) )>q  n. 
Let A E M(f, GL(n, q)); then A acts faithfully on an elementary abelian group 

V of order q~. Define G as A �9 V, which is the extension of V by A. Let 

M ~ M(f  q'a, G); then if (b.l) or (b.2) holds M V  is nilpotent. Since I M . I -  IA I > 

q~, M V #  V and there is non trivial q ' -element of G which centralizes V, in 

contradiction to the definition of G. The proof of Theorem C.I is complete. 

The results of Theorem B.7 can be substituted into C.I to get criteria for a 

group to be nilpotent if it is a product of two of its nilpotent subgroups. Thus 

we get Theorem C.3 which requires also the following iemma. 

LEMMA C.2. Let A, B be nilpotent subgroups of G and suppose that A 
normalizes B. I[ [or each q E ~ s.t. q liB[ AOq(B) is nilpotent then AB is 
nilpotent. 

PROOF. We. may assume that G = AB. Assuming AB is not nilpotent, it 

follows that there exists a p E ~  s.t. Op(A)~_F(G). As Op(A) normalizes 

Op ( B ), consider the group Oo ( A ) O, ( B ). Since O, ( A )Op ( B ) ~ G, there exists a 

prime q, q ~ p ,  s.t. Oq(B) does not normalize Op(A)Op(B). It follows that 
[Op(A),Oq(B)]~ I in contradiction to the nilpotency of AOq(B). 
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THEOREM C.3. Let G be a group with an abelian Sylow 2-subgroup. Let B 

be a nilpotent subgroup of G of odd order, f E ,~ and assume that either 1) or 2) 

holds : 

l) f (p)->2 for all p ~ r ( B ) ,  

2) f(p)_-> I for all p ~ ~ (B)  and B is abelian. 

Then if A ~ ~g(~,G) and A normalizes B, then AB is nilpotent. 

PROOF. Since A E~/ ( f ,G)  and S2(G) is abelian, we may assume that 

[(2)-<_ 1. As A normalizes the niipotent group B, A normalizes Oq(B) for all 

q ~ ~r(B). By Lemma C.2 it is sufficient to prove that for any q E ~r(B), 

A O , ( B )  is nilpotent. Let's fix a q, q ~E 7r(B); then [(q)  = a >_- I and we can 

write f = fq'~ for some function f defined by f ( p ) = f ( p )  for p ~  q and 
f (q)  = 0. Since q is odd and f(2) -<_ 1, by Theorem B.7. (a) q satisfies a for f. 

Now substitute in C.I q for q, f for f, A for A and Oq(B) for B. We get, as 

either a >-__2 or a = 1 and O,(B)  is abelian, that AO,(B) ,  is nilpotent. 

Theorem C.3 immediately yields 

COROLLARY C.4. Let G be a group with an abelian Sylow 2-subgroup. Let 

A E~g(k,G), k E N  U{oo}, k _->2 and assume that A normalizes a nilpotent 

subgroup B of G of odd order. Then AB is nilpotent. 

By considering groups of odd order, we get 

COROLLARY C.5. L e t G b e a g r o u p o f o d d o r d e r ,  A E~t (k ,G) ,  k ~NU{oc}, 

k >= 2 and assume that A normalizes a nilpotent subgroup B of G. Then AB is 

nilpotent. Consequently, if A E ~g(oc G), then F(G)  C_ A. 

COROLLARY C.6. Let G be a group of odd order, f E ~, and assume that 

f(p)>_-2 for all p ~ r ( G ) .  Then d( f ,G)  and IF(G)I have the same prime 

divisors. 

PROOF. Let A E ~/(f,G) and assume that q IF(G)I and q Z IA I. Let B be 

a minimal normal elementary abelian q- subgroup of G. By Theorem C.3 AB is 

a nilpotent subgroup of G of order larger than I A I. But class(Sp (AB))<-_ f (p)  

for all p, in contradiction to the maximality of I A I. Thus every prime divisor of 

IF(G)[ divides d(f ,G).  

On the other hand assume that p Z ]F(G)I. Let A ~.~t(/,G); then by 

Theorem C.3 AF(G)  is nilpotent and hence Op(A ) C_ C(F(G))  C_ F(G)  yielding 

p X[A  1, as required. 
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COROLLARY C.7. Let G = HK be a group o[ odd order, where H and K are 

1r-Hall and 7r'-Hall subgroups o[ G, respectively. Then d(o%H) > d(2, K) 

implies O,(G) .J 1. 

PROOF. D e f i n e f E ~  b y : [ ( p ) = 2 i f p E T r ' a n d f ( p ) = ~ i f p E ~ r ,  andlet  

A E~/ ( / ,G) .  Suppose that O , ( G ) = l ;  then F(G) is a 7r'-group and by 

Corollary C.6 A is a 7r'-group, contradicting d(oo, H ) >  d(2, K). 

COROLLARY C.8. Let G be a group of odd order and let 7r(G)= 

{Try, 7r2" �9 �9 7r~} be any partition of ~r(G). If H, denotes a 1r~-Ha!l subgroup of G 

and A, E ~l (oc, Hj ) [or i = l , - . . k ,  then: 

F ( G ) =  n A~ x f"} A~ •  n A~ 
~EG xEG xEG 

PROOF. Clearly n ~ a A ~ x  n , ~ c A ~ x . . -  A x~oA~C_F(G).LetB~ denote 

S,,,(F(G)). Since A~ normalizes B,, by Theorem C.3 applied to H,  A,B~ is a 

nilpotent ~r~-subgroup of Hi, hence A~B~ = A~ and so B~ C_ A, similarly B~ C_ A~ 

for any x ~ G. This proves that B~ _C N ~ A ~- and so 

F(G)C_ n A7 x n A~ x . . .  n A~. 
x~G xEG xEG 
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